Preservation and Sediment Cycling Beneath "Ghost Glaciers"

How Cold-Based Ice Dictates Arctic Landscape Evolution

Lee Corbett PhD Dissertation Defense March 17, 2016

<u>Advisor</u> Paul Bierman

<u>Co-Authors</u> Thom Davis (Bentley University) Everett Lasher (Northwestern University) Dylan Rood (Imperial College)

<u>Committee</u> Andrea Lini Jeff Hughes Shelly Rayback

<u>Support & Funding</u> UVM Rubenstein School of Environment and Natural Resources UVM Department of Geology NSF Graduate Research Fellowship NSF Doctoral Dissertation Research Improvement Grant GSA Quaternary Geology and Geomorphology Division Mackin Award Dartmouth College Graduate Alumni Research Award International Association of Geochemistry Student Research Grant

The high latitudes are warming...

Rare Burst of Melting Seen in Greenland's Ice Sheet

By KELLY SLIVKA JULY 24, 2012

Surface melt is increasing...

NATURE/Vol 452/17 April 2008 LOSING GREENLAND

Is the Arctic's biggest ice sheet in irreversible meltdown? And would we know if it were? Alexandra Witze reports.

Ice mass is decreasing...

Greenland will host 54 GNET stations (red dots) to monitor the thinning of the ice sheet.

> The largest three outlet glaciers (arrowheads) have changed their behaviour.

Jakobshavn

Kangerdlugssuag

Helheim

Thinning

No change

Thickening

...hence, we should look to the past to understand the present and future

But, we have a problem:

A "normal" or "warm-based" glacier Liquid meltwater is available at the bed, allowing erosion to occur

A "cold-based" glacier

No liquid water is available at the bed, so no erosion can occur

The Problem

Cold-based glaciers perform little erosion and therefore leave behind little physical evidence of their presence.

So how do we know if a landscape was covered by cold-based glaciers??

The "Cold-Based Ice Irony"

Cold-based ice exists in the high latitudes...

... but the high latitudes are forecasted to warm most quickly and also contain most of the planet's glacial ice...

... so the places where it is most important to learn about glacial history are also the places where it is most challenging because traditional approaches do not work.

Project Goals

 Understand the history of these high-latitude landscapes
 Understand cold-based ice processes and improve the methods for studying cold-based ice landscapes I. LANDSCAPE CHRONOLOGY AND GLACIAL HISTORY IN THULE, NORTHWEST GREENLAND (QUATERNARY SCIENCE REVIEWS, 2015)

II. CONSTRAINING MULTI-STAGE EXPOSURE-BURIAL SCENARIOS FOR BOULDERS PRESERVED BENEATH COLD-BASED ICE IN THULE, NORTHWEST GREENLAND (EARTH AND PLANETARY SCIENCE LETTERS, 2016)

III. GLACIAL HISTORY AND LANDSCAPE EVOLUTION OF SOUTHERN CUMBERLAND PENINSULA, BAFFIN ISLAND, CANADA, CONSTRAINED BY COSMOGENIC ²⁶AL/¹⁰BE (GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2016)

IV. AN APPROACH FOR OPTIMIZING IN SITU COSMOGENIC ¹⁰BE SAMPLE PREPARATION (QUATERNARY GEOCHRONOLOGY, 2016)

Tools: In situ Cosmogenic ¹⁰Be & ²⁶Al

- "In situ": produced within the mineral structure (quartz)
- "Cosmogenic": from cosmic rays
- "¹⁰Be": rare, radioactive isotope of Be; $t_{1/2} = 1.36$ Ma
- "²⁶Al": rare, radioactive isotope of Al; $t_{1/2} = 0.71$ Ma

Formation of Cosmogenic Nuclides

Earth is bombarded by high-energy cosmic rays

...causing the formation of ^{10}Be in quartz (SiO₂)

¹⁰Be is produced only on the surface of a rock

¹⁰Be is produced at about 4 atoms per gram of quartz per year

¹⁰Be is radioactive and has a half-life of 1.36 million years

"Cosmogenic Dating"

Glacial period: Bedrock is shielded

Interglacial period: Bedrock is **exposed**

Assumption: **Zero inheritance** (i.e. no ¹⁰Be leftover from previous periods of exposure) *Hereafter referred to as "simple" exposure ages*

The Two-Isotope Approach

¹⁰Be

²⁶A

Production Rate: ~4 atoms $g^{-1} yr^{-1}$ Half-life: 1.36 million yr Production Rate: ~26 atoms $g^{-1} yr^{-1}$ Half-life: 0.71 million yr

Other Important Background...

Baffin Island, Canada

The Data Set

149 samples (144 ²⁶Al/¹⁰Be) Collected 1992-1995

Bedrock & boulders (65 bedrock) (84 boulders)

"Simple" Exposure Ages

Trends: Bedrock Ages > Boulder Ages

Trends: Ages Increase with Elevation

Trends: ¹⁰Be Ages > 26 Al Ages

Exposure/Burial Modeling

KM95-016

Minimum limiting... Exposure: 199 ky Burial: 501 ky Total: 700 ky

Solving for the simplest path: One period of exposure followed by one period of burial

Exposure/Burial Modeling

Minimum-limiting exposure durations: 5.9-480 ky

Minimum-limiting burial durations: 140-7500 ky Minimum-limiting • total histories up to ~8 My!

Baffin Conclusions

1.) Numerous age patterns indicate cold-based ice

2.) The lifecycle of the landscape is characterized dominantly by periods of burial

3.) The preserved landscape is very old, sometimes millions of years, certain areas may pre-date inception of the Laurentide Ice Sheet

Thule, Northwest Greenland

Wolstenholme Fjord

10 km

Harald Moltke Brae

N

TUTO Ice Dome

Mapping

Analysis of Cosmogenic ¹⁰Be and ²⁶Al

GT027

GT044

(n = 28 glacially-deposited boulders)

GT036

Deglaciation Timing

GT022: 10.7 ± 0.6 ka GT023: 10.6 ± 0.6 ka GT055: 10.7 ± 0.7 ka (External uncertainties)

Two-Isotope Analysis

Model the simplest path: one period of exposure followed by one period of burial

Minimum limiting exposure durations: 11 – 96 ky Minimum limiting burial durations: 88 – 627 ky Total histories: 111 – 734 ky

Numerical Models of Boulder Scenarios

Holocene Period

(Lisiecki and Raymo, 2005)

Last Glacial Maximum

Warm periods: "Interglacial" Cold periods: "Glacial"

Numerical Models of Boulder Scenarios

Thule Conclusions

1.) Initial deglaciation of the landscape occurred ~11 ka

2.) Basal thermal conditions are very heterogeneous

3.) Certain boulders have been preserved for long durations (hundreds of thousands of years) subglacially, but most have only been buried for shorter durations

4.) Boulders have likely been recycled through numerous generations of glacial till

The Big Picture

High-latitude subglacial erosion processes are heterogeneous over both space and time

Cold-based "ghost glaciers" preserve surfaces subglacially, creating ancient, relict landscapes

New techniques are needed to understand these complex surfaces

Cold-Based Ice: An Opportunity?

Record preserved on a warm-based ice landscape

Interglacial

Record preserved on a cold-based ice landscape (e.g. Baffin study; median total history ~750 ka)

UVM Geomorphology, Quaternary Geology, and Glacial Geology Colleagues

Paul Bierman Ben DeJong Alison Denn Jane Duxbury **Joseph Graly Sophie Greene** Will Hackett **Matt Jungers Christine Massey** Andrea Lini **Tom Neilson Tom Neumann Eric Portenga** Luke Reusser Veronica Sosa-Gonzalez **Stephen Wright**

1989: Looking at rocks

2011: MS degree (more looking at rocks)

2016: PhD degree (still looking at rocks)

NO liquid water present No erosion can occur Liquid water is present
 Erosion by abrasion
 Erosion by plucking/quarrying

Cold-based ice is widespread in the high latitudes

Thule Two-Isotope Data

<u>Case #1</u> (n = 3) ¹⁰Be ages: deglacial ²⁶Al/¹⁰Be: constant exposure

 $\frac{\text{Case #2}}{(n = 8)}$ ¹⁰Be ages: old
²⁶Al/¹⁰Be: burial

<u>Case #3</u> (n = 17) ¹⁰Be ages: old ²⁶Al/¹⁰Be: constant exposure Case #2: Old ages, ²⁶Al/¹⁰Be ratios indicative of burial Constraining Uncertainties

Monte Carlo simulations (n = 10,000)

Choosing random, independent 10 Be and 26 Al concentrations from a normally-distributed population of possible values based on the 1 σ analytic uncertainty

Case #2: Old ages, ²⁶Al/¹⁰Be ratios indicative of burial Constraining Uncertainties

Minimum limiting exposure duration: $21 \pm 1 \text{ ky} (1 \sigma)$, 6% uncertainty Minimum limiting burial duration: $378 \pm 80 \text{ ky} (1 \sigma)$, 21% uncertainty Case #2: Old ages, ²⁶Al/¹⁰Be ratios indicative of burial Constraining Uncertainties

<u>Exposure</u> Minimum duration: 11 – 96 ky (av. 26 ky) Uncertainties (yr): 1 – 4 ky (av. 2 ky) Uncertainties (%): 4 – 8 % (av. 7 %)

<u>Burial</u> Minimum duration: 88 – 627 ky (av. 368 ky) Uncertainties (yr): 55 – 112 ky (av. 87 ky) Uncertainties (%): 9 – 105 % (av. 37 %)

Case #3: Old ages, ²⁶Al/¹⁰Be ratios indicative of constant exposure A Conundrum!

 $\frac{\text{GT043}}{{}^{10}\text{Be: }26.9 \pm 1.5 \text{ ky}}$ ${}^{26}\text{AI: }27.7 \pm 1.9 \text{ ky}}$ ${}^{26}\text{AI}/{}^{10}\text{Be: }6.95 \pm 0.38$ Old but not buried?!?

Case #3: Old ages, ²⁶Al/¹⁰Be ratios indicative of constant exposure Short Burial Durations

Models assume 100 ky of burial alternating with 10 ky of exposure; use average ${}^{26}AI/{}^{10}Be$ ratio uncertainty of all Thule samples (n = 28, 4.5%)

